
I N F O R M S
Transactions on Education

Vol. 7, No. 2, January 2007, pp. 178–184
issn 1532-0545 �07 �0702 �0178 informs ®

doi 10.1287/ited.7.2.178
©2007 INFORMS

Lessons from Modeling Sudoku in Excel

Howard J. Weiss
Department of Management Science/Operations Management, Fox School of Business, Temple University,

Philadelphia, Pennsylvania 19122, USA, hweiss@temple.edu

Rasmus A. Rasmussen
Molde University College, 6402 Molde, Norway, Rasmus.Rasmussen@hiMolde.no

In a previous paper, Chlond (2005) presented the formulation of Sudoku as an integer program. Chlond claimsthat a spreadsheet formulation is not straightforward but we present a simple Excel formulation. In light of
the current use of Excel in the classroom it can be highly instructive to formulate the problem using Excel.
In addition, the formulation of this relatively simple model enables instructors to introduce students to the
capability of programming Solver using VBA. In a follow-on paper (Rasmussen and Weiss 2007), we demonstrate
advanced lessons that can be learned from using Premium Solver’s powerful features to model Sudoku.

1. Introduction
Recently, in this journal, Chlond (2005) presented
an integer programming formulation of the popular
puzzle, Sudoku. If anything, Sudoku has become
even more popular since Chlond’s paper appeared.
In addition to the many books on Sudoku and the
many newspapers that publish daily Sudoku puzzles,
it is interesting to note that The Mathematical Associa-
tion of America published an article on Sudoku (Wilson
2006) in a recent newsletter and The American Scien-
tist also recently published an article about Sudoku
(Hayes 2006). Neither of these articles which appeared
in a mathematical and scientific publication mentions
integer programming directly. Wilson makes no men-
tion of any formulation while Hayes refers to the
puzzle as a “constraint-satisfaction problem.” In addi-
tion, neither article mentions the possibility of using
Excel to solve Sudoku puzzles.
Several Operations Researchers have written papers

promoting the use of Excel in the classroom. For
example, see Winston (1996) for one of the earlier
papers or Ragsdale (2001) for a more recent paper. In
addition, the current popularity of Excel in the Man-
agement Science/Operations Research (MSOR) class-
room is evidenced by the number of MSOR textbooks
that have been written explicitly for use with Excel.
The website for Excel’s Solver, http://www.solver.
com/academic2.htm, lists 14 textbooks that include
the Premium Solver for Education. Many other text-
books include Excel to a lesser extent. In light of the
popularity of modeling in Excel and the popularity
of using Solver it is highly instructive to express the
popular Sudoku puzzle as an Excel Solver model.

Chlond used Mosel to formulate the problem, and
writes

When problems requiring multiple subscripts, as in
these cases, are modeled effectively, the activity of
converting mathematical formulations into working
models using languages such as Mosel and AMPL rep-
resents a straightforward exercise. This is not always
the case when building spreadsheet versions. Indeed,
in many cases, a spreadsheet implementation pro-
vides an equal or perhaps even greater challenge than
that provided by the actual formulation. This problem
becomes especially acute as the number of subscripts
required by the model increases.

It is correct that as the number of subscripts increases,
modeling in a spreadsheet becomes more difficult.
Fortunately, we can successfully model Sudoku with
three subscripts rather than five and this will make
formulation in Excel as easy as in Mosel. Our aim in
this paper is not to compare modeling languages with
Excel but simply to demonstrate that we can teach
our students valuable lessons about modeling in Excel
through the use of Sudoku.
In the next section we present a 3-dimensional

model. Afterwards, we rearrange the spreadsheet to
make it easier to enter the basic puzzle constraints
into Solver. We then demonstrate how to include rela-
tively simple VBA code for using Solver’s subroutines
to add constraints for the numbers that define a spe-
cific Sudoku instance.

2. A 3-Dimensional Formulation
Sudoku is usually a 9 by 9 puzzle as exemplified by
Chlond’s example displayed in Table 1a. It is easier

178

mailto:hweiss@temple.edu
mailto:Rasmus.Rasmussen@hiMolde.no
http://www.solver.com/academic2.htm
http://www.solver.com/academic2.htm

Weiss and Rasmussen: Lessons from Modeling Sudoku in Excel
INFORMS Transactions on Education 7(2), pp. 178–184, © 2007 INFORMS 179

Table 1 Sample Sudoku Puzzles

to present the spreadsheet formulation with a smaller
puzzle, such as the one displayed in Table 1b. Some
authors, such as Hayes (2006), refer to the 9 by 9 prob-
lem as order-3 and the 4 by 4 puzzle as order-2 for
obvious reasons. Not all Sudoku puzzles have square
interior blocks. For example, USA Today publishes
both traditional 9 by 9 puzzles and 6 by 6 puzzles
with 2 by 3 interior blocks as in Table 1c.
In this paper we consider only square interior

puzzles and let n refer to the number of rows and
columns in the problem. All concepts in this paper are
easily transferred from 4 by 4 puzzles to 9 by 9 or any
other sized Sudoku puzzle. We demonstrate this with
the inclusion of the model for a 6 by 6 problem in the
Excel file that accompanies this paper.

Lesson 1: Formulation Matters
Chlond observes that dimensionality can be a
problem when formulating problems in Excel. The

difficulty arises because of the 5-dimensional defini-
tion of the problem given by Chlond. Reducing the
number of dimensions leads to a relatively simple
Excel formulation.
Let xi� j� k = 1 if the cell in row i and column j of

the puzzle has the value k, where i, j , k= 1�2� � � � �n.
Because this model is 3-dimensional it is easy to rep-
resent this problem in a spreadsheet.
Chlond lists the four Sudoku conditions:
Each cell contains a single integer.
Each integer appears only once in each (2 by 2) or

(3 by 3) grid.
Each integer appears only once in each row.
Each integer appears only once in each column.
Note that “appears only once” can be replaced by

“appears at least once” for Sudoku. The subtle dif-
ference between the two wordings is that we can use
either strict equality constraints or inequality (“>=”)
constraints.
Each condition generates n2 constraints for a total of

4n2 constraints. The total number of (binary) variables
is n3. Incidentally, in American Scientist Hayes writes
that “In one obvious encoding there are 810 con-
straints in an order-3 grid” whereas Chlond’s formu-
lation and our formulation have only 324 constraints.
The Excel spreadsheet that contains a sample 4 by 4

puzzle and its solution is displayed in Figure 1. Please
note how simple the spreadsheet is.

Lesson 2: Colors Can Be Used to Display
the Third Dimension
The cells shaded in pink, orange, yellow, and green
represent the 64 variables for the 4 by 4 example.
Given the variable definition, xijk, the first dimension
is the row, the second dimension is the column, and
the third dimension refers to whether that entry is
1, 2, 3, or 4. Using different colors enables us to easily
identify the third dimension. In addition, the colors
make the spreadsheets that follow more readable. The
pink variables will be 1 if the corresponding element
in that cell in the 4 by 4 solution table in B25:E28 is 1.
The orange variables will be 1 if the corresponding
element in the 4 by 4 solution table is 2 and so on. For
example, in the yellow table which represents values
of 3, cells 	1�4
, 	2�2
, 	3�1
, and 	4�3
 are 1 and the
corresponding elements of the solution table all have
the value of 3.
The cells shaded blue represent the four constraint

types and are entered as shown in Table 2. We have
used different shades of blue to distinguish among the
constraint types and to aid in understanding the tran-
sition to the spreadsheet that follows in Figure 2. The
Excel formulas used for the spreadsheet in Figure 1
appear in Table 2.
Thus, the basic constraints have been created and

are very easily read and understood in the Excel
formulation.

Weiss and Rasmussen: Lessons from Modeling Sudoku in Excel
180 INFORMS Transactions on Education 7(2), pp. 178–184, © 2007 INFORMS

Figure 1 An Excel Spreadsheet for the 4 by 4 Sudoku Puzzle Modeled with 3-Dimensional Variables

Table 2 Steps Used to Create the Basic Puzzle Constraints

Weiss and Rasmussen: Lessons from Modeling Sudoku in Excel
INFORMS Transactions on Education 7(2), pp. 178–184, © 2007 INFORMS 181

Figure 2 More Efficient Solver Formulation Due to Constraint Adjacency

The last step is to convert the Integer Program solu-
tion as given in the 64 pink, orange, yellow and green
decision variable cells to the required 4 by 4 Sudoku
grid. This is done by entering the formula

=F6∗F4+L6∗L4+R6∗R4+X6∗X4
into cell B25 and copying this formula to the
remainder of the solution cells (B25:E28).
This formula will select the 1 in cell F4 or the 2 in

cell L4 or the 3 in cell R4 or the 4 in cell X4 depending
on which of the variables representing the upper left
hand entry in the four blocks of decision variables
equals one.
The next step is to enter the 64 structural con-

straints in Solver and add the individual constraints
imposed by the specific puzzle that is displayed in
cells B18:E21 in Figure 1.

3. Preparing for Solver
Solver allows us to enter multiple constraints at one
time (on one line) if the cells are adjacent. Therefore, it
is useful to modify the current spreadsheet by moving
the cells so that the (blue) constraint cells form con-
tiguous blocks whenever possible.

Lesson 3: Excel Models Can Be Modified to
Improve Ease of Use with Solver
We have rearranged cells in the spreadsheet to make it
easier to enter the problem into Solver. The modified
spreadsheet is displayed in Figure 2. The color-coding
and labeling should make it very easy to understand

that this formulation and the original 3-dimensional
formulation in Figure 1 are identical.
The solver input is displayed in Figure 3. The objec-

tive is left blank since the goal is simply to find a
feasible solution.
The variables are easily entered into Solver as

F6:U9. Note that rearranging the variables to form a
single contiguous block makes it is easier to enter the
variables into Solver.
We have used three lines in Solver to represent the

basic constraints. The first constraint (V6:Y9) is used
to ensure that each cell has exactly one integer. The
second line (V11:Y18) is used to ensure that each row
and each grid contains a 1, 2, 3, and 4 while the third
line (F10:U10) is used to ensure that every column
contains a 1, 2, 3, and 4. The original formulation of
this 4 by 4 puzzle displayed in Figure 1 would have

Figure 3 Solver Parameters for the 4 by 4 Puzzle

Weiss and Rasmussen: Lessons from Modeling Sudoku in Excel
182 INFORMS Transactions on Education 7(2), pp. 178–184, © 2007 INFORMS

Figure 4 Adding Solver Constraints Using VBA

required 13 lines of constraints for these constraints
rather than 3.
Lastly, the fourth constraint defines all of the vari-

ables (F6:U9) as binary. For the original spread-
sheet displayed in Figure 1 we would need 4 such
constraints.
The only constraints missing are the constraints for

the specified elements of the individual puzzle.

4. Entering the Specific
Problem—Programming Solver

One option for entering the specific problems is to
enter the constraints one at a time by hand into
Solver. Alternatively, this is an excellent opportunity
to explain how to program Solver in VBA.

Lesson 4: It Is Easy and Useful to Use VBA to
Program Solver
In order to access Solver’s subroutines in VBA they
must be referenced. Open the VBA editor (Tools,
Macro, Visual Basic Editor) and then in VBA use Tools,
References and check the SOLVER option. Albright
(2007) has an extensive discussion about calling Solver
from VBA.
The syntax for Solver’s subroutines can be found

at Microsoft’s web site, “How to create Visual Basic
macros by using Excel Solver in Excel 97” at http://
support.microsoft.com/kb/843304. In spite of the
Excel 97 term in the title of the web site the docu-
ment was revised as recently as August 2005 and the
commands work for the latest version of Excel.
The command for adding a constraint is given at

this site by the syntax shown in Figure 4.
The five relations displayed in Figure 4 are available

for the basic Solver that ships with Excel. Note that
Premium Solver has additional relations available and
we will take advantage of this in our follow-on paper.
We have added a button that will add the con-

straints for the specific problem using VBA code. The

code for adding the constraints is very similar to and
only slightly more difficult than Chlond’s Mosel code
and is displayed in Figure 5. The major portion of
code that is equivalent to Chlond’s code is displayed
in boldface between the two dashed lines.
PuzRowOffset and PuzColOffset are VBA constants

that are used to indicate the puzzle’s position in the
spreadsheet while varRowOffset and varColOffset are
used to indicate the location of the variables in the
spreadsheet.
The code to solve a problem rather than needing to

click on Tools, Solver, Solve is given simply by Solver-
Solve which we have added to the subroutine.
The spreadsheet also includes a button to clear the

problem so that the spreadsheet can be used repeat-
edly for different problems. The added code uses the
SolverReset and SolverOK subroutines. The syntax
for these commands can be found on the Microsoft
site or in the Premium Solver Platform User Guide
(Anonymous 2006b) and the implementation can be
seen in the accompanying Excel workbook.
With the use of the buttons, a student simply needs

to enter the puzzle into cells B14:E17, press the “Add
constraints (and solve)” button and then read the
solution message from Solver to ensure that it states
“Solver found a solution.” In the event that a puzzle
is entered that has no feasible solution Solver will
report, “Solver could not find a feasible solution.”

5. The 9 by 9 Puzzle
The spreadsheet for the 9 by 9 puzzle is displayed
in Figure 6. While in the figure below the cells are
largely unreadable it should be easily seen due to the
color coding of the cells that the structure of this table
is identical to the structure of the 4 by 4 example.
That is, the spreadsheet contains nine 9 by 9 squares
for the variables, 81 column sums below the vari-
ables to ensure that each integer appears once in each
column of the solution, 81 row sums to ensure that

http://support.microsoft.com/kb/843304
http://support.microsoft.com/kb/843304

Weiss and Rasmussen: Lessons from Modeling Sudoku in Excel
INFORMS Transactions on Education 7(2), pp. 178–184, © 2007 INFORMS 183

Figure 5 VBA Code for Creating Constraints for a Specific Puzzle and Solving

Figure 6 The 9 by 9 Puzzle

Weiss and Rasmussen: Lessons from Modeling Sudoku in Excel
184 INFORMS Transactions on Education 7(2), pp. 178–184, © 2007 INFORMS

Figure 7 Solver Parameters for the Basic 9 by 9 Puzzle

each variable appears once in each row and 81 quad-
rant sums to ensure that each integer appears once
in each 3 by 3 quadrant. All that remains is to create
the table of sums on the top right that guarantee that
each cell contains only one integer, by entering the
formula for the upper left cell (CI6) and copying it to
the remaining 80 cells.
In terms of preparing the problem for solver there

now are still only 3 lines required to represent the
basic constraints of the 9 by 9 puzzle. The basic Solver
parameters without the constraints for the specific
puzzle are displayed below.
The last aspect is to add the constraints for the spe-

cific puzzle and solve the problem. The code for the
button for adding constraints is identical to the code
for the 4 by 4 puzzle except that the constants for the
puzzle row and column need to be changed, and the
constant for the puzzle size must be changed to 9.
Obviously this is easy.
Excel’s standard solver is limited to 200 variables

and the 9 by 9 problem has 729 variables. The 6 by 6
problem has 216 variables. Therefore, for either of
these problems, a premium solver is required. Unfor-
tunately, the required Solver is not the Premium
Solver for Education (PSE) that ships with several
textbooks because it also has a restriction of 200
variables. Fortunately, a 15-day version of Premium
Solver Version 7.0 (the professional version rather the
educational version) can be easily obtained by reg-
istering at http://www.solver.com/ and then down-
loading the free trial version. (An academic license
can be purchased for $225.)
The 4 by 4, 9 by 9, and 6 by 6 spreadsheets have suc-

cessfully solved all puzzles that we have attempted.

6. Conclusions
Students can learn several lessons from Sudoku.
Chlond has demonstrated that the puzzle can be
modeled as a linear (binary) integer program. In a
different context, Koch (2005) writes, “Choosing the
right formulation is often more important than having
the best solver algorithm” and this is exemplified by
the usage of the 3-dimensional model in this paper
versus the 5-dimensional model in Chlond’s paper. In
addition this paper demonstrates the value of color
for representing three-dimensional problems in Excel,
and the ease of use of Solver’s subroutines in VBA.
In a follow-on paper we will use Sudoku to introduce
students to advanced features of Premium Solver.

Acknowledgments
We are extremely grateful to the editor and referees for their
comments.

References
Albright, S. C. 2007. VBA for Modelers—Developing Decision Support

Systems Using Microsoft Excel, 2nd ed. Duxbury.
Anonymous. 2006a. Microsoft, How to create Visual Basic

macros by using Excel Solver in Excel 97. http://support.
microsoft.com/kb/843304 (last accessed on May 11, 2006).

Anonymous. 2006b. Premium Solver Platform User Guide, Front-
line Systems. http://www.solver.com/supp_pspguide70.php
(login required) (last accessed on Nov. 3, 2006).

Chlond, M. J. 2005. Classroom exercises in IP modeling: Sudoku
and the log pile. INFORMS Trans. Ed. 5(2), http://ite.
pubs.informs.org/Vol5No2/Chlond/ (last accessed on May 11,
2006).

Hayes. 2006. Unwed numbers. American Scientist 94(1) 12–15, Also
at http://www.americanscientist.org/template/AssetDetail/
assetid/48550?&print=yes (last accessed on May 11, 2006).

Koch, T. 2005. Rapid mathematical programming or how to solve
sudoku puzzles in a few seconds. Konrad-Zuse-Zentrum fur
Informationstechnik Berlin, ZIB Report 05-51, http://www.
zib.de/Publications/Reports/ZR-05-51.pdf (last accessed on
May 11, 2006).

Ragsdale, C. T. 2001. Teaching management science with spread-
sheets: From decision models to decision support. INFORMS
Trans. Ed. 1(2), http://ite.pubs.informs.org/Vol1No2/
Ragsdale/ (last accessed on May 11, 2006).

Rasmussen, R. A., H. J. Weiss. 2007. Advanced lessons on the craft
of optimization modeling based on modeling sudoku in excel.
INFORMS Trans. Ed. To appear.

Wilson, R. 2006. The sudoku epidemic. Focus 26(1) 5–7, (Also
at http://www.maa.org/pubs/jan06web.pdf) (last accessed on
May 11, 2006).

Winston, W. 1996. The teacher’s forum: Management science with
spreadsheets for MBA’s at Indiana university. Interfaces 26(2)
105–111.

http://www.solver.com/
http://support.microsoft.com/kb/843304
http://support.microsoft.com/kb/843304
http://www.solver.com/supp_pspguide70.php
http://ite.pubs.informs.org/Vol5No2/Chlond/
http://ite.pubs.informs.org/Vol5No2/Chlond/
http://www.americanscientist.org/template/AssetDetail/assetid/48550?&print=yes
http://www.americanscientist.org/template/AssetDetail/assetid/48550?&print=yes
http://www.zib.de/Publications/Reports/ZR-05-51.pdf
http://www.zib.de/Publications/Reports/ZR-05-51.pdf
http://ite.pubs.informs.org/Vol1No2/Ragsdale/
http://ite.pubs.informs.org/Vol1No2/Ragsdale/
http://www.maa.org/pubs/jan06web.pdf

